
~ 1 Pergamon 
Journal of Structural Geology, Vol. 16, No. 7, pp. 1007 to 1021, 1994 

Copyright © 1994 Elsevier Science Ltd 
Printed in Great Britain. All rights reserved 

0191-8141/94 $07.00+0.00 

Rheological controls on the shapes of single-layer folds 

PETER J .  HUDLESTON a n d  LABAO LAN 

Department  of Geology and Geophysics, University of Minnesota, Minneapolis, MN 55455, U.S.A.  

(Received 4 February 1992; accepted in revised form 19 August 1993) 

Abstract--Information about rheology can potentially be gained from analyzing the shapes of folds in isolated 
buckled layers. We employ two-dimensional finite element models of incompressible flow in power-law viscous 
fluids to investigate this. We first show that the shape of the initial perturbation has relatively little effect on the 
final shape of the folds when the buckling instability is high. We find that the most significant factor affecting the 
shapes of single-layer folds is the stress exponent, n L, in the flow law of the layer. The hinges of outer arcs become 
sharper as n L increases and the limbs become relatively longer and straighter. These differences can be expressed 
quantitatively by defining a curvature index, ki, which has a value of 0 for a fold formed by circular arcs and 1 for a 
chevron fold. Results show a dependence of ki on n L that is well-defined for L/h > 10, with ki increasing with n L . 
Data for experimentally-produced folds are consistent with the numerical results. 

Limb dip, ki and L/h can all be readily measured on natural folds and provide a basis for comparing the shapes 
of natural and computer-simulated folds. The data for small folds in siltstone layers in shales in the central 
Appalachians are consistent with highly non-linear flow of the stiff siltstone layers during buckling. 

INTRODUCTION 

IN THE last 30 years or so, beginning with the work of 
Biot (1957, 1961) and Ramberg (1961, 1963a), theoreti- 
cal, physical and numerical models have led to a greatly 
increased understanding of the mechanisms of folding in 
layered materials. It is difficult, however, to assess the 
relevance of these models to folding in nature because 
we do not know what the rheological properties of the 
rocks were at the time of folding. We can gain some 
understanding of the processes responsible for folding in 
nature by seeing how closely natural folds compare with 
folds produced in experimental and numerical models, 
in terms of their shape, wavelength/thickness character- 
istics and strain distribution (e.g. Ramsay 1967, chap. 7, 
Hudleston 1973a,b, Ramsay & Huber 1987, Cruikshank 
& Johnson 1993, Hudleston & Lan 1993), and by seeing 
how well natural folds match the predictions of folding 
theory (e.g. Sherwin & Chapple 1968, Fletcher 1974, 
Fletcher & Sherwin 1978, Hudleston & Tabor 1988, 
Johnson & Pfaff 1989). From this work, we believe that 
many natural folds are initiated by buckling, a mechan- 
ical instability that may develop when layered materials 
(of elastic, viscous or more complex type of constitutive 
relationship) are subjected to layer-parallel compression 
(e.g. Biot 1961, Ramberg 1963a). Buckle folds can 
develop in isolated stiff layers in a less stiff matrix or in 
multilayered packages, in which individual layers vary in 
composition (and thus in stiffness) and thickness. They 
may also develop in homogeneous but anisotropic 
materials (Cobbold et al. 1971, Ridley & Casey 1989). 

Single-layer folds are much less variable in shape than 
multilayer folds, and we restrict our investigation in this 
paper to folds developed by the buckling of a single 
isolated viscous layer in a less viscous matrix. The 
purpose of the paper is to explore how rheological 

properties affect the shape of such folds and to seek 
criteria based on shape that may be able to provide 
information about rheological properties of rocks de- 
formed under slow natural conditions. 

It is pertinent to review some features of the theoreti- 
cal treatment of the single-layer configuration. For very 
slow natural deformations one is justified in ignoring 
inertial forces, and it is usual also to ignore gravitational 
body forces for small structures (Ramberg 1970, but see 
Wollkind & Alexander 1982). Theory predicts that, for a 
system consisting of an extensive isolated stiff viscous 
layer in a less viscous matrix subject to layer-parallel 
pure shear, all harmonic components that are present in 
the initial irregularities of the layer interfaces will be- 
come amplified, with a maximum rate of growth occur- 
ring for the 'dominant wavelength' (Biot 1961, Ramberg 
1963b, Fletcher 1974, Smith 1975). For Newtonian 
materials, the ratio of dominant wavelength to thickness 
is a function only of the ratio of viscosity of the stiff layer 
to the viscosity of the matrix. Wavelength and thickness 
both change with time as a consequence of the uniform 
base flow on which the bucking instability is super- 
imposed (Sherwin & Chapple 1968, Fletcher 1974), and 
the harmonic component that experiences the greatest 
amplification is also a function of time or, more con- 
veniently, of the uniform shortening upon which the 
buckling instability is superimposed (Sherwin & Chap- 
pie 1968, Fletcher 1974, Johnson & Pfaff 1989). The 
wavelength that shows the greatest amplification is 
called the 'preferred wavelength' by Fletcher (1974), 
and this wavelength varies with shortening. A simple 
relationship between dominant wavelength and pre- 
ferred wavelength is given by Johnson & Pfaff (1989, 
equation 27a). 

For non-linear viscous materials, fold amplification, 
and hence also both the dominant wavelength/thickness 
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and the preferred wavelength/thickness, is found to 
depend strongly on the stress exponent in the flow law of 
both layer and matrix when the constitutive relation- 
ships are of power-law type (Fletcher 1974), or the 
effective stress exponents in flow laws of more general 
non-linear type (Smith 1977). 

Experimental work confirms the tendency of buckling 
in single viscous layers to develop periodic folds (Biot et 
al. 1961, Hudleston 1973b, Neurath & Smith 1982), and 
analysis of fold growth from an initial local bell-shaped 
perturbation indicates close agreement to the theoreti- 
cal predictions for the independent amplification of the 
harmonic components representing the perturbation 
(Abbassi & Mancktelow 1992, Mancktelow & Abbassi 
1992). 

Wavelength/thickness frequency spectra for natural 
single-layer folds are similar in appearance to theoretical 
amplification spectra (Sherwin & Chapple 1968), and 
studies of wavelength/thickness spectra in natural folds, 
particularly when done in conjunction with estimates of 
layer-parallel shortening, have been carried out to arrive 
at estimates of viscosity contrast and inferences about 
the degree of non-linearity of the flow law (e.g. Fletcher 
1974, Hudleston & Hoist 1984, Hoist 1987, Hudleston & 
Tabor 1988). One of the questions raised by such 
studies, however, is just how closely the frequency 
distribution of arc-length/thickness measured in mature 
fold trains is related to the theoretical amplification 
spectrum of wavelength/thickness (Fletcher & Sherwin 
1978). There is in particular uncertainty about the form 
of the spectrum of the initial irregularities in the layers 
which, with the amplification spectrum, determines the 
final amplitude spectrum. 

In this paper, we systematically investigate how the 
shapes of single-layer folds in power-law materials 
depend on the stress exponent of the layer and on the 
ratio of viscosities of layer and matrix. A prime objective 
is to identify characteristics of folds, other than 
wavelength/thickness ratio, that depend on the rheologi- 
cal properties of the layers, with the idea that these 
characteristics may be used to make inferences about 
rheological properties of rocks during natural folding. 
The current work is part of a broader study of the 
development of folds in non-linear viscous media (see 
Lan & Hudleston 1991, Hudleston & Lan 1993). Partial 
results of what is presented here have been given in 
Hudleston & Lan (1993). 

METHODS OF CHARACTERIZING FOLD SHAPE 

Various methods of describing or characterizing the 
geometrical characteristics of folds have been proposed 
over the years, starting with Van Hise (1896a, b), who 
named and described similar folds and parallel folds. 
Others to address the topic include Mertie (1959), 
Fleuty (1964), Ramsay (1967), Wilson (1967), Stabler 
(1968), Hudleston (1973a), Ramsay & Huber (1987), 
Twiss (1988), Johnson & Pfaff (1989) and Bastida 
(1993). Ramsay (1967, chap. 7) provided a good review 

of early work on folds and introduced several methods 
for representing fold shape. He made the distinction 
between 'layer' shape and 'surface' shape, and it is the 
shapes of the two surfaces bounding a single folded layer 
that we emphasize in this paper. Several workers have 
used Fourier series to analyze and represent fold shapes. 
Stabler (1968) and Hudleston (1973a) both used the sine 
terms of a Fourier series to characterize single-surface 
fold shapes, and Fletcher (1979) and Johnson & Pfaff 
(1989) have used the cosine terms to analyze fold shape 
(layer and surface) and its changes during fold growth at 
low to moderate amplitudes. 

Except for similar folds, the outer and inner arcs of 
folds in any given layer will differ in shape. However, a 
complete train--upper and lower surfaces--of periodic 
symmetric folds can be generated by taking a section of 
(upper or lower) surface between two adjacent hinges 
and performing on this appropriate symmetry oper- 
ations. The basic segment we choose for sine series 
harmonic analysis is the 'quarter wavelength' between 
hinge point and inflexion point, with the origin of the co- 
ordinates at the inflexion point. For this analysis, the 
folds must be cylindrical and examined in a section 
perpendicular to the hinge. Many natural folds approach 
this condition, although non-cylindrical folds are also 
common (e.g. Wilson 1967). Utilizing a quarter wave- 
length segment of a fold, expanded to become periodic, 
all coefficients except odd terms in the sine series are 
zero. Thus the harmonic series, F(x),  representing the 
fold becomes (Hudleston 1973a): 

2:rx 2:r3x 
F(x) = bl sin + b3 sin - -  

L L 

2zt5x 2:rnx 
+ b5 sin - - . . .  + bn sin - - ,  (1) 

L L 

where L is the wavelength and bn are the coefficients 
whose values define fold shape in an x - y  Cartesian co- 
ordinate system. With this approach, the inner and outer 
arcs of a single fold are treated separately and will in 
general have different values of the coefficients. This 
may be compared with the approach taken by Fletcher 
(1979), Johnson & Pfaff (1989) and Cruikshank & John- 
son (1993), who employed both even and odd terms of a 
cosine series 

2erx 2:r2x 
F(x) = ao + al cos T + a2 cos T 

2:r3x 2Jrnx 
+ a 3 cos - - . . .  + an cos - - ,  (2) 

L L 

with origin on the axial surface trace and with all sine 
terms zero, which allowed them to represent a complete 
upper or lower surface of periodic folds with anticlinal 
and synclinal portions of different shape, as occurs in 
parallel folds. At low amplitudes the parallel form is 
produced by the first harmonic, with a2 being of opposite 
sign for the upper and lower surfaces of the layer 
(Fletcher 1979). For studying growth rates of folds, a 
cosine series representation is preferable: for character- 
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Fig. 1. Buckle folds at four stages of development produced in experi- 
ments with Newtonian stiff layers and matrix, with effective viscosity 
ratio ,t~L/,/2 M = 50 (see Hudleston 1973b for details of experiments). 
Curvature of the section of layer surface shown with a heavy line is 

plotted against x in Fig. 3. 
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Fig. 2. Plot of harmonic coefficients b 3 against b 1 for the folds B and C 
shown in Fig. 1 and the same folds at other stages of fold development 
not illustrated. Data for the folds not shown in Fig. 1 are plotted with 
small symbols. Note that the folds do not depart significantly from a 

sinusoidal shape (b 3 = 0) until after stage 3. 

izing shape with as few parameters as possible, use of the 
first two terms in a sine series is advantageous. Both 
representations are referred to below. 

The ratio b3/bl, or slope on a graph of b 3 against bl, is 
a sensitive indicator of shape, varying from negative 
values for straight-limbed folds, through zero for sinus- 
oidal shapes, to positive for folds with rounded hinges 
and short limbs (Figs. 1 and 2). A wide range of single- 
surface fold shapes, for which the harmonic coefficients 

in the higher terms in the series decrease in systematic 
manner (with continuous variation in shape through the 
range) can be uniquely represented by the value of b 1 
and the ratio b3/bl (Hudleston 1973a, fig. 9). Other 
shapes of course are possible, and Twiss (1988) has 
shown that the range of fold shapes represented by bl 
and b3/bl can be placed in a more general descriptive 
scheme. It should be noted that a 3 modifies shape in the 
same way as does b3, and a plot of a 3 against al is 
analogous to one of b 3 against bl, noting the difference 
in origin between the two harmonic series. 

There are other methods that for some purposes may 
be more suitable than harmonic analysis in quantifying 
single-surface shape variations. Ramsay (1967, p. 350) 
developed parameters of fold shape P1 and P2 based on 
curvature. He proposed a definition of the hinge zone of 
a fold surface as that part with curvature in excess of the 
reference curvature of a circle (i.e. the reciprocal of the 
radius) that has as its diameter the line joining the 
inflexion points either side of the hinge. The limbs of the 
fold are those parts with curvature less than the refer- 
ence curvature. P1 is then defined as the ratio of the 
length of the projection of the limbs on the line joining 
the inflexion points to the length of the projection of the 
hinge zone on the same line. P2 is the ratio of the 
maximum curvature of the fold surface to the reference 
curvature. One disadvantage of P1 and P2 is that the 
values of both tend to infinity as the hinge zone ap- 
proaches a point, which is the situation for a perfect 
chevron shape. We adopt a somewhat different 
approach here. Curvature, k(x), is defined by (e.g. 
Leithold 1981, p. 878): 

k(x) = d2y/dx2 
[1 + (dy/dx)2] 3/2" (3) 

We calculate curvature by fitting low-degree poly- 
nomials to the x-y co-ordinates used to represent shapes 
(of natural, numerically-produced or experimentally- 
produced folds) and evaluate equation (3) for a best-fit 
polynomial. The object is to find the curvature of a 
smoothly varying function that represents the fold pro- 
file closely. This is best done in practice by taking 10-20 
points per half 'wavelength' and piecewise fitting a 
second degree polynomial to three or five points to 
calculate curvature at the central point. This has been 
done in Fig. 3 for part of the experimental fold train 
indicated by a heavy line in stage 2 of Fig. 1. Because 
curvature involves the second derivative of the function 
representing fold shape, without the smoothing involved 
in an approach such as this, the function k(x) for natural 
folds contains a lot of noise. Other techniques, including 
cubic splines (e.g. Kincaid & Cheney 1991, pp. 317- 
322), were tried, but deemed less suitable. The use of 
curvature, as here, in an analysis of fold shape in two 
dimensions should be contrasted with its use in describ- 
ing three-dimensional fold surface shape (Lisle 1992). 

Calculated curvature for the experimental folds in 
Fig. 1 can be compared with the plots of curvature 
plotted against distance from hinge to hinge for several 
ideal fold shapes shown in Figs. 4(b)-(d). One extreme 
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Fig. 3. Plot of curvature against x for the surface of the folds shown in 
Fig. 1 (stage 2) by a heavy line. The different symbols are for two 

separate sets of co-ordinate points used to represent the fold. 

ideal shape is a fold formed by circular arcs with a 
discontinuity and change in sign of curvature at each 
inflexion point. A second is a pure chevron shape with 
limbs of zero curvature and infinite curvature at the 
hinge. These might be considered to correspond to folds 
that are all hinge and all limb, respectively. Comparison 
of Figs. 3 and 4 shows that the selected experimental fold 
is much closer in shape to a sinusoid than to either of the 
extreme shapes. The differences in pattern of curvature 
variation in these folds can be expressed using a curva- 
ture index, ki, which is defined here as the ratio of the 
distance between the inflexion point (where curvature is 
zero) and the point at which curvature attains, arbi- 
trarily, 0.75 of its maximum value to the distance be- 
tween the inflexion point and the hinge (where 
curvature is maximum). Distances are measured from 
the inflexion point to the projections of the points at 
which k(x) = 0.75 kmax and k(x) = kma x (hinge) on an 
axis (x-co-ordinate) through the inflexion point and 
perpendicular to the axial plane (see Fig. 4a). This index 
has a value of 1 for a chevron fold, 0 for a fold formed by 
circular arcs, and 0.77 for the function, y = sin x (for 
sinusoidal functions of general form y = a sin x, its values 
ranges between 0.54 and 1.0, corresponding to values of 
amplitude, a, of from near zero to infinity). It reflects the 
degree of flatness or roundness of the fold limbs and it 
cannot be uniquely expressed in terms of the coefficients 
of a Fourier series. 

We also examine thickness variations in buckled 
layers in this paper, and the method we employ here for 
characterizing changes in folded layer thickness is to plot 
normalized orthogonal thickness, t~, against limb 'dip', 
a (Ramsay 1967, p. 360). 

NUMERICAL MODELING 

To investigate how fold shape depends on rheological 
parameters,  we use a finite element code adapted from 
that developed by Hanson (1985, 1990) for simulating 
flow of glaciers. It treats the case of plane incompress- 

ible quasi-static flow in a power-law material. The basic 
application of this code to the study of the growth of 
single-layer buckle folds is described elsewhere (Lan & 
Hudleston 1991), and comparison of the results with 
theoretical predictions and with the results of earlier 
finite element models is given in that paper. Grids of 
200-400 quadrilateral elements are used to represent a 
folded layer in its matrix, making use of symmetry in the 
construction of the grid. Tens to 100 iterations are 
required for convergence to a steady-state velocity solu- 
tion for each increment of displacement (for non-linear 
rheology). 

In what follows, the subscripts L and M refer to layer 
and matrix, respectively, and the subscript o refers to the 
initial stage. Wavelength and thickness are represented 
by L and h, respectively. They change in value as a result 
of deformation. The percentage shortening in the direc- 
tion parallel to the layer is indicated by S. It is the 
shortening of the homogeneous strain that would result 
if only one material were present. 

Three values (1, 3 and 10) of power-law exponent,  nL, 
of the stiff layer were selected, providing a range from 
Newtonian behavior to strongly non-linear, and cover- 
ing the range of values commonly found in experimental 
work involving ductile deformation of rock (e.g. Kirby 
& Kronenberg 1987). Viscosity,/~, depends on stress 
level in non-linear materials, and will vary with position 
in both layer and matrix during folding. A viscosity ratio 
(m = ~L/~tM) of layer to matrix, however, can be defined 
for the basic flow (on which the perturbation flow 
associated with folding is superimposed), and values of 
m of 10, 215,630, for nL = 1, 3, 10, respectively, were 
taken for the first series of models. These three values of 
m for nL = 1, 3, 10 correspond to a constant value of 10 

I~l/nM /l~l/nL for the quantity ,--M "'-'L , where D is the coefficient 
in the flow law, b = Do" (in which ~ and o are the second 
invariants of the strain rate and stress tensors, respect- 
ively) and viscosity,/~ = D -  1/,bO/n- 1). Models were run 
with constant strain rate for the base flow. A second 
series of models for values of m 10 times those of the first 
series (m = 100, 2100, 6300), and a third series for/~L//~ M 
= 100 for all three values of nL were also run. Initial 
wavelength/thickness (Lo/ho) was taken as an indepen- 
dent variable in these models, and values of Lo/h o = 6, 
12, 20, 30 were chosen to straddle the predicted domi- 
nant wavelength/thickness, Ld/h , and to cover typical 
values seen in nature. The parameters used and the 
theoretical dominant wavelength/thickness and pre- 
ferred wavelength/thickness, Lp/h, at an amplification 
(amplitude/initial amplitude) of 40 for the various 
models are shown in Table 1. Individual runs involved 
shortening of up to 60% (or 75% for nL = 1). For the 
basic experiments, the initial shape of the perturbation 
in both surfaces of the layer was identical and sinusoidal, 
with amplitude, Ao, of 0.083 L•  (based on A o = 0.1 h o 
for Lo/h o = 12). Fletcher (1974) has shown theoretically 
that the power-law exponent,  nM, of the matrix has a 
small effect on the buckling instability, when the rheo- 
logical parameters are appropriately expressed. In fact, 
the dynamic growth rate is increased at constant m as 
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Fig. 4. Definition of curvature index, ki (a), and illustration of curvature and curvature index for three ideal fold shapes, 
(b) sinusoid, (c) circular arc and (d) chevron. 

Table 1. Rheological parameters and geometrical data. The left three 
columns give the combinations of rheological parameters used in the 
numerical models• The fourth column is the theoretical dominant 
wavelength/thickness (using Fletcher's 1974 first-order theory). 
Columns 5 and 6 are values of the preferred wavelength/thickness, 
Lp/h, at an amplification of 40, and the shortening, S, at which this is 
attained• The last three columns are the ratio of amplification of folds 
for which Lo/h o = 6, 12 and 20, respectively, to the maximum 

amplification (for the fold of the preferred wavelength/thickness) 

Amax Amax Amax 
n L n M m Ld/h Lp/h S% AL,,/h. = 6 Al~,/h = 12 ALo/h. = 20 

1 1 10 8.5 4.0 58.0 0.18 0.61 0.98 
3 1 215 15.0 14.1 5.9 0.10 0.75 0.84 

I0 1 630 14.3 14.0 1.9 0.12 0.84 0.69 

1 1 100 16.8 14.5 13.6 0.08 0.49 0.99 
3 1 100 11.8 10.6 9.8 0.18 0.96 0.60 

10 1 100 8.3 7.7 7.2 0.56 0.78 0.28 

e i the r  n L or  nM is inc reased ,  with the  d o m i n a n t  
wave leng th / th i ckness  dec reas ing  as n L is i nc reased  and  
increas ing  as nM is i nc reased  (see  Smith  1977, figs. 6 and  
8). The  mat r ix  ma te r i a l  was m a d e  l inear  viscous,  n M =  1, 
in all but  a few cases  in ou r  models .  

A n  e x a m p l e  of  the  resul ts  of  the  numer ica l  mode l ing  is 
shown in Fig.  5, in which the  p rogress ive  d e v e l o p m e n t  of  
fold shape  for  N e w t o n i a n  layer  and  mat r ix  is d i sp layed .  

E f f e c t  o f  i n i t i a l  s h a p e  

I 10 

30 

50 

60 

75 

Fig. 5. Results of numerical modeling of a buckle fold developed in 
pure shear in a stiff layer embedded in a matrix, with n L = 1,/~L//ZM = 
m = 10, Lo/h o = 20, and A o = 0.167h o at values of shortening, S = I0, 

30, 50, 60 and 75%. 

If  fold shape  is to  be  used  to p rov ide  in fo rma t ion  on 
rheo log ica l  cond i t ions ,  it is impe ra t i ve  to eva lua t e  the  
effect  of  the  shape  of  the  ini t ial  p e r t u r b a t i o n  on final fold 
shape .  W e  have  done  this by  runn ing  numer ica l  mode l s  
wi th  four  ini t ial  p e r t u r b a t i o n s  of  d i f fe ren t  shape ,  all of  
low ampl i t ude ,  and  all per iod ic .  These  are  s inusoid ,  
chevron ,  semi-e l l ipse ,  and  bell .  T h e s e  can be  cons ide red  
to r e p r e s e n t  h ighe r -o rde r  p e r t u r b a t i o n s  on a ' p r i m a r y '  

wave leng th  tha t  is wi th in  the  band  of  wave leng ths  mos t  
s t rongly  ampl i f ied  ear ly  in the  fo ld ing  process .  The  
' p r i m a r y '  wave leng th  is no t  necessar i ly  the  d o m i n a n t  
wave leng th  o r  the  wave leng th  tha t  will b e c o m e  the  
p r e f e r r e d  wave leng th  at  some  specif ied va lue  of  shor ten -  
ing, but  the  fu r the r  it is f rom the  p r e f e r r e d  wave leng th  
the  less the  p robab i l i t y  of  such a wave leng th  be ing  
p re sen t  in a na tu ra l  fold t ra in  (see  F l e t che r  & Sherwin  
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Fig. 6. (a) Four different initial perturbations of the upper surface of 
the stiff layer (both upper and lower surfaces of the layer have the same 
initial shape) from anticlinal to synclinal hinges, with a vertical 
exaggeration of about x 10 to emphasize the differences. In all cases 
Lo/ho = 12 andAo = 0.1ho. The functions are defined as follows ( - 3  -< 
x -<3): s inusoid--y = - 0 . 1  sin(er/6)x; chevron--y  = -0.033x; semi- 

+ 2 + 2 1/2 + + 1 ell ipse--y = _0.033[3 - ( x _ 3 )  ] ; bel l--y = _0.1[1+(x_3)2] - . 
The inflexion point is indicated by i, and the hinges by h. The origin of 
the co-ordinate system (0,0) here and in Fig. 7 is in the center of the 
layer at the inflexion point. The scale is arbitrary. (b) Curvature 

variations for the initial shapes shown in (a). 

(1978) and, for example the frequency distributions of 
wavelength/thickness in Sherwin & Chapple (1968) and 
Hudleston & Hoist (1984)). In taking this approach we 
are separating the process of selective growth of a 
'primary' wavelength from the subsequent modification 
of the selected wavelength by higher order harmonics as 
the fold grows (see Fletcher 1979, 1982, Johnson & Pfaff 
1989). It is the nature of this subsequent modification 
that we study here. 

Initial single-surface shapes and corresponding curva- 
ture variations are shown in Fig. 6 and the mathematical 
definitions are given in the caption to that figure. Initial 
'primary' wavelength/thickness ratio (Lo/ho = 12) was 
the same for all models, and viscosity ratio was taken as 
m = 10,215,630, for nL = 1, 3, 10, respectively. Results 
are shown in Figs. 7-10 for nL = 1 and 10. Both chevron 
and bell shapes have sharp hinges and rapid drops in 
curvature towards the inflexion points. The bell shape 
has subsidiary hinges either side of the inflexion point, a 

situation that thus represents weak parasitic folds on the 
limb of a larger fold. The reader should note that in this 
usage the bell curve is truncated and made periodic, 
unlike the bell curve used by Biot et al. (1961) and 
Abbassi & Mancktelow (1992) to simulate a single local 
perturbation. The semi-ellipse, with long axis parallel to 
x, is a double-hinged fold with the hinges lying close to 
the inflexion points. The crest (or trough) of the fold, 
which is the 'hinge' for the purpose of analysis, is in fact 
the point of minimum curvature between two anticlinal 
(or synclinal) hinges. These initial shapes thus provide a 
wide range of starting configurations. Note, however, 
that all are symmetric about the principal axial planes. 
The effect of asymmetry about the axial plane is not 
investigated here, but will be addressed briefly in the 
discussion section. It has been investigated experiment- 
ally (Abbassi & Mancktelow 1990). Likewise, we do not 
consider here the growth of the harmonic components in 
a complete spectrum of initial irregularities, as done by 
Fletcher & Sherwin (1978). 

Mature fold shapes after 60% shortening for n L = 1 
and 10 are shown in Fig. 7. Only the upper surface of the 
competent layer, except for the 'sine wave' models, is 
shown, because the lower surface is identical in shape to 
the upper surface and can be obtained from it by a 
rotation of 180 ° about the center of the plot. It is 
apparent that there is very little difference in shape 
among the four folds for nL = 10 and m = 630. There are 
much greater differences among the four folds for nL = 1 
and m = 10, although the differences in outer arc shape 
are not large: the differences in the inner arc are more 
pronounced. The greater buckling instability for nL = 10 
and m = 630 is reflected in the higher fold amplitudes 
(compare Figs. 7a & b). 

Progressive changes in shape with overall shortening, 
as recorded by harmonic analysis and curvature vari- 
ations, are shown in Figs. 8-10. Note that the differences 
among the four models are rapidly diminished as short- 
ening progresses for nL = 10 and m = 630, whereas the 
differences are diminished much more slowly for nL = 1 
and m = 10. Take the example of the 'ellipse' starting 
shape. For nL = 10, by 10% shortening the curvature 
maxima and minima are at the 'proper' hinge positions, 
that is at the crest and trough of the folds, and the 
original hinges of the double-hinged fold adjacent to the 
inflexion point are of secondary importance (Fig. 9b). 
For nL = 1, the folds are still double-hinged at 10% 
shortening (Fig. 9a), and indeed also at 40% shortening 
(not shown). By 60% shortening, however, the hinges 
are in the proper locations (Fig. 9c) at the fold crest and 
trough. 

Plots of b3/bl (Fig. 8) and ki (Fig. 10) against shorten- 
ing show the same general features--a rapid conver- 
gence to a preferred shape (which itself changes with 
shortening) for nL = 10 and a slow convergence to a 
preferred shape for n L = 1. For nL = 10, b 3 initially 
changes much less than bl, and b3/bl becomes small, 
indicating the initial dominance of the 'primary' wave- 
length. In fact b 3 becomes slightly negative in all cases, 
indicating fold shapes with slightly sharper hinges and 
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initial perturbations shown in Fig. 6(a) after 60% shortening for (a) n L = 1, m = 10 and (b) n L = 10, m = 630. The lower 
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thickness reflects the difference in early layer shortening and thickening, which is greater for the weak buckling instability 

represented by (a). Figure 5 shows how early layer shortening and thickening occurs. 

straighter limbs than a sine function. This effect is most 
pronounced at about 10% shortening. Subsequently b 3 
increases, and by S = 20% (limb dips of about 40-50°), 
all the folds are close to sinusoidal in shape (b3/b t 
increases). As is typical for buckle folds, the b 3 vs b 1 
plots are strongly concave upwards. 

For comparison with Fig. 8, if m = 1 and nL = 1, the 
layer and the matrix would become identical and the 
layer boundaries passive markers. Thus, the initial per- 
turbations would be amplified passively; on a harmonic 
plot (such as Fig. 8) their shapes would lie on straight 
lines of constant 'shape' passing through the origin (see 
Hudleston 1973a). 

We conclude from this analysis that when buckling 
instabilities are high ( n  L = 3, m = 215--not shown--  and 
n L = 10, m = 630) the initial form of the perturbation in 
the layer has a relatively small effect on the shape of the 
mature folds once a 'primary' wavelength has been 
selected. This encourages us to examine further the 
shapes of mature folds to see how strongly they depend 
on the values of r/L and m. 

Effect of  rheology 

A comparison of the shapes of three folds with ident- 
ical starting configuration (Lo/ho = 12, Ao = 0.1 ho), the 
same shortening (S = 50%), and the same viscosity ratio 
(m = 100), but for different values of nL (nL = 1, 3, 10), 
is made in Fig. 11. Amplitude (or limb dip) is not the 
same because the strength of the buckling instability, 
and thus also growth rate, increases with nL. It is 
apparent from this figure that the limbs become rela- 

tively longer and straighter as n L is increased and that 
the hinges (in both inner and outer arcs) become more 
localized and sharper. This is borne out by the values of 
ki calculated for the outer arcs of these folds (see caption 
to Fig. 11). Similar differences in shape are apparent in 
other models at different values of Lo/h o (see Lan & 
Hudleston 1991, fig. 4, for Lo/h o -- 30) and for different 
values of m. (It will be apparent later that n L is much 
more important in determining these characteristics of 
shape than m.) 

There are also differences in the pattern of thickness 
variations around the computer-generated folds that can 
be associated with differences in n L. Examples of such 
differences for linear and non-linear cases are shown in 
Figs. 12 and 13. For n L ---- 1 and m = 10 hinge thickening 
(and eventually limb thinning as dips exceed 45 ° ) occurs 
progressively such that, on a plot of t 'a  against a,  the fold 
moves systematically from its initial class 1B (parallel) 
shape towards a class 2 (similar) shape through the field 
of class 1C. The data plot very close to the theoretical 
curves for 'flattened' parallel folds (Ramsay 1967, fig. 
7-79) as had been observed earlier in physical experi- 
ments in linear viscous materials at low viscosity contrast 
(Hudleston 1973b). For Lo/ho -- 6 the shape after 75% 
shortening is that of a highly flattened parallel fold. 
Much less flattening occurs for Lo/ho -- 20 (Fig. 13a, the 
folds shown in Fig. 5). In neither of these cases does the 
fold actually flatten in the manner proposed by Ramsay 
(i.e. by homogeneous strain of a parallel fold): for this to 
happen the viscosities of layer and matrix would need to 
be the same. 

For n L = 10 and m = 630 the pattern of thickness 
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changes with dip and with shortening is quite different. 
The most apparent difference is that relative thickening 
in the hinges is much less for folds at high amplitude for 
nL = 10 than for folds with n L = 1, largely reflecting the 
much higher value of m for nL = 10; and thus a much 
higher buckling instability. The second difference is that 
the hinge thickening that does occur mostly comes early 
in the deformation, with only modest further changes at 
later stages. Thus after 10% shortening the folds are 
close to being similar (class 2) in shape, and with further 
shortening limb dips increase with little further change 
in thickness in either hinge or limb. This has the effect, 
on the t'~/a plot, of moving the fold 'horizontally' away 
from a class 2 shape and into the class 1C field. This is 
best seen on the plot for Lo/ho = 12 (Fig. 13b). How- 
ever, it should be noted that after about 30% shortening, 
the changes in position of the fold on the t'Ja plot are 
slight. It should also be pointed out that there is 'noise' in 
the plots of Figs. 12 and 13, especially for Lo/ho = 20, n L 
= 10, due to the representation of the fold by straight- 
line segments joining nodal points in the finite element 

grid. The fold surfaces were not smoothed before 
measurements of thickness were made. 

For any fold, except a similar fold, the inner and outer 
arcs have different shapes, although at very low ampli- 
tudes, as Fletcher (1979) has shown, similar folds and 
parallel folds are effectively indistinguishable. Differ- 
ences in shape of inner and outer arcs of non-similar 
folds become more pronounced as amplitude increases. 
Because the outer arc (from hinge point to inflexion 
point) is longer and better defined in both natural and 
numerical folds than the inner arc, the focus will be on 
outer arcs in this study. Harmonic analysis reveals some 
of the features of the different evolution of shape of folds 
with different values of nL. In our models, these differ- 
ences are most pronounced for Lo/ho = 20 and almost 
non-existent for Lo/h o = 6. (This is not the most desir- 
able situation, because typical natural fold populations 
have peak values of L/h of 4-8.) On plots of b 3 against 
bt, all folds show the characteristic concave upward 
form, starting from an initial shape on the line b 3 = 0. 
The slope on these plots increases with b 1 and also 
generally increases with hE, but the situation is compli- 
cated by the initial behavior when Lo/h o = 20 and nL is 
large (Figs. 14b & c). Specifically, when nL = 10, m = 
630 and Lo/h o = 20, fold shape, which starts out as 
sinusoidal, develops at first a very slight tendency 
towards chevron style, that is b 3 is initially negati;ce (this 
phenomenon was already noted in the section on the 
effect of initial shape). It is not until the fold attains a 
limb dip of about 50 ° that b 3 becomes positive, as the 
fold shape passes back through sinusoidal to become 
more rounded in the hinge. For nL = 1 and rn = 10, b 3 
becomes positive at the start of the deformation and the 
ratio of b3/b I increases monotonically. The folds in this 
case depart from sinusoidal shapes at about 15 ° limb 
dips. Shape evolution for nL = 3 is closer to shape 
evolution for nL = 10 than for nL = 1. 

It can be seen from Fig. 14 that there are two circum- 
stances in which differences in shape are slight. When 
Lo/ho = 6 there are almost no differences in shape 
among folds for different hE, and when folds grow to 
high amplitudes or limb dips, for any value of Lo/ho or 
hE, there is a convergence of shape (Fig. 14c). 

Additional information on shape can be obtained by 
examining curvature from hinge to hinge in the numeri- 
cal folds. It is instructive first to compare folds showing 
extreme variations in shape• This is done in Fig. 15 for 
Lo/h o = 12, nL = 1, m = 10, S = 60% and Lo/ho = 20, n L 
= 10, m = 630, S = 50%. In the linear case there is a slow 
change in curvature (dk/dx small) from the anticlinal 
hinge (outer arc) on the left, an increasing gradient 
through the inflexion point, and a large gradient to 
attain the high curvature in the synclinal hinge (inner 
arc). The pattern for nL = 10 is different in several 
respects. There is a rapid drop in curvature (dk/dx large) 
away from the anticlinal hinge and a low gradient at the 
inflexion point with a section of almost straight limb and 
zero curvature. The curvature in the outer arc is again 
less than in the inner arc. 

As noted using harmonic analysis (Fig. 14a), there are 
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only slight differences in shape among all the numerical 
folds produced for Lo/ho = 6 and nL = 1, 3 and 10, and 
regardless of the value of m. For Lo/h o - 20, however, 
there are systematic differences in shape of the outer 
arc, which are reflected in the value of ki, for different 
values of n L. ki systematically increases with n L at all 
stages of shortening (Fig. 16). Also, ki changes relatively 
little in value in each case as shortening progresses. 
Thus, folds are straighter-limbed and sharper-hinged at 
all stages of folding as nL is increased, with some conver- 
gence of shape at the highest values of S, corresponding 
to limb dips of 80-90 °. The weak dependence of ki on m 
can be seen in Fig. 16, in which data for several values of 
m are plotted. Results for nL = 3, m = 2150, and for n e 
= 10, m = 6300 are almost indistinguishable from those 
for nu = 3, rn = 215 and ne = 10, m = 630, respectively, 
and are not plotted. 

Discussion 

Experimental models of buckle folds starting with 
'flat' layers show a progressive development in shape 
from low-amplitude sinusoids when first measurable (b 3 

0 for outer or inner arc surface shape) to become 
rounded in the hinges (e.g. Figs. 1 and 2) (see also 
Hudleston 1973b). Folds in physical and numerical 
models that take initial perturbations in the layers to be 
of sinusoidal shape undergo similar shape development 
(e.g. Fig. 14). Chapple (1969) demonstrated that local- 
ized plastic failure in fold hinges would lead to sharper 

hinges and straighter limbs than the more uniformly 
distributed strain in folds developed in unconfined New- 
tonian viscous layers. One might expect that folds in 
layers with non-linear flow laws might develop mature 
shapes that tended to become straighter limbed as the 
exponent in the flow law is increased. This is what we 
observe in our numerical models. 

The early development of a sinusoidal shape reflects 
the fact that harmonic components of the perturbation 
to first-order grow independently (Biot 1961, Fletcher 
1974) and the fastest growing harmonic dominates the 
early shape development.  Thus for the four different 
initial perturbations on a primary wavelength displayed 
in Fig. 6, a comparison of the theoretical and numerical 
growth rates of the harmonic components (Table 2) 
shows that for nL = 1 the early growth (A/Ao) of the first 
and third terms in the cosine series is constant and 
independent of initial shape, as predicted by theory. The 
contribution of the term in cos x outpaces that due to the 
term in cos 3x, such that the ratio a3/a I (also b3/bl) 
diminishes (except for the sinusoidal function for which 
a 3 is theoretically initially zero) as the fold grows. This is 
apparent in Fig. 8. The growth rates are much stronger 
for nL = 10 than n L = 1, and b3/b I diminishes much more 
rapidly with shortening in Fig. 8(b) than in Fig. 8(a). 
Nice experimental verification of the independent low- 
amplitude growth of the harmonic components of a bell- 
shaped perturbation has been given by Abbassi & 
Mancktelow (1992). 

Spontaneous modification of a sinusoidai fold shape 
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ki  = 0 .573 ;  (b )  n L = 3, ki  = 0 .624 ;  (c)  n L = 10, ki  = 0 .691 .  

occurs with fold growth and the appearance of higher 
order harmonics (Fletcher 1979, 1982, Johnson & Pfaff 
1989). The first harmonic (term in cos 2x) provides in all 
the cases studied here a pinch-and-swell modification (a2 
negative for the upper surface and positive for the lower 
surface, if at is positive) to the term in cos x, and this has 
the effect of maintaining an approximate parallel fold 
shape, up to moderate limb dips (Fletcher 1979). This 
effect is not examined further here, and is 'hidden' by 
the use of a sine series to represent fold shapes. The 
progressive increase in the value of b3/bl with b] (or limb 
dip) shown in Figs. 2 and 14 reflects the modification of 
the sinusoidal shape given by b t by the term in sin 3x, 
which gives the folds more rounded hinges. This also 
occurs in all the cases studied, but to a degree that 
depends on the value of nL. The initial decrease in b3/b 1 
in Fig. 8 represents independent growth of the two 
harmonics, in which the higher order wavelength is 
amplified less than the 'primary' wavelength; the sub- 
sequent increase in b3/bl represents the finite-amplitude 
effect of shape modification by the term in sin 3x. 

The differences in shape among folds in stiff layers 
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with different values of stress exponent, nL, may be 
accounted for by variations in effective viscosity around 
the folded layer due to variations in stresses associated 
with buckling. The effect of these viscosity variations on 
the perturbing flow are not accounted for in the analyti- 
cal expressions of fold growth• Normal stresses in the 
stiff layer will be highest in the fold hinges, and thus in 
non-linear stiff layers the hinge zone will be relatively 
weak in response to layer-parallel buckling stresses. 
Deformation in the hinges takes the form of shortening 
in the inner arc and extension in the outer arc with, for 
non-linear layers, the former exceeding the latter, giving 
rise to a slight net thickening in the hinges• This prefer- 
ential 'failure' in the hinges is the cause of the hinge 
thickening noted in plots of t ' l a  (Fig. 13b) and the 
reason that the limbs remain relatively straight and tend 
to rotate bodily, as shown by the curvature distribution 
(Fig. 15) and the plots of ki vs shortening for different 
values of r/L (Fig. 16). In the limit when/7 L = o o  in an 
unconfined stiff layer, as Chapple (1969) has shown, 
there is plastic failure in the hinge and no deformation in 
the limbs, and a perfect chevron fold develops• 

As folds attain high limb dips, much of the work 
involved in buckling is associated with driving out matrix 
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material from between the fold limbs, and the pattern of 
deformation does not differ greatly from one of passive 
folding (i.e. homogeneous flow) (Chapple 1968). At this 
stage of folding, differences in fold shape for different 
values of nL tend to be diminished. Differences in fold 
shape are also less when Lo/h o is small. In such cases 
more of the layer is hinge zone and less limb simply as a 
result of geometry. 

C O M P A R I S O N  W I T H  O T H E R  M O D E L I N G  

S T U D I E S  A N D  A P P L I C A T I O N  T O  N A T U R A L  
F O L D S  

It is instructive to compare our results with the results 
of other numerical or experimental studies and with data 
on natural folds, and it is most appropriate to do this by 
comparing fold shape characteristics at given values of 
'wavelength' and 'amplitude',  represented by L/h and 
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Fig. 15. Curvature, k, in selected computer-generated folds, as a 
function of (arbitrary) co-ordinate distance, x, from 'anticlinal' hinge 
or outer arc (left) to 'synclinal' hinge or inner arc (right) for the 
conditions shown. Note the straight limb segment around the inflec- 
tion point in (b). The two folds represented in (a) and (b) were selected 

only to show the strong contrast in pattern of curvature variation. 

Table 2. Growth of numerical folds represented by the 
first two terms in a cosine series, for ne = 1, L o / h o  = 12, 
m = 10, and for four initial shapes (see Figs. 6 and 7), 
after 5% shortening. The theoretical values of fold 
growth from Fletcher's (1974) first-order theory are 

aLs_~/al.s_ . = 1.27 and a3s_Ja3s=f j = 1.17 

als=5 a3s=5 
Initial shape also, , a3s=o al.s:,~ a3s=~ ~ 

Sine 0•0524 0.00002 1.33 2.39 
Chevron 0.0424 0.0048 1.32 1.21 
Bell 0.0358 0.0094 1.32 1.21 
Ellipse 0.0593 -0.0097 1.32 1.21 

limb dip, respectively• Thus, we have interpolated the 
results of our numerical models to construct diagrams to 
show how curvature index, ki, varies as a function of L/h 
for constant limb dip and how ki varies as a function of 
limb dip for fixed L/h, for various values of nL. 

It was noted earlier in the paper that the largest 
differences in shape among folds for different values of 
nL are for intermediate stages of fold development and 
for large values of Lo/h o. Therefore  we plot ki as a 
function of L/h for maximum limb dips of 40 ° (Fig. 17a) 
and 70 ° (Fig. 17b), and ki as a function of limb dip for L/h 
= 12 (Fig. 18). The interpolated data points are joined 
by solid lines on these figures. For our numerical data, 
there is a strong increase in ki with L/h up to about L/h = 
10, and a modest increase thereafter.  For L/h > 10, ki is 
systematically larger for increasing values of nL, but for 
L/h <-10 there is no clear pattern of dependence of ki on 
nL. In Fig. 18 note that ki changes very little with limb 
dip for constant L/h and again that higher values of ki are 
associated with larger values of nL. Within the range of 
viscosity ratios studied and for L/h >- 10 there is only a 
weak dependence of ki on m, with ki increasing as m is 
increased (see Fig. 16). Thus, only the results for m = 
100 are plotted in Figs. 17 and 18. 

Other modeling results 

ki 
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0 . 0  • i • m • i • i • i • i i 
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S h o r t e n i n g  (%) 

Fig. 16. Variation in curvature index, k i ,  with shortening, S, for the 
outer arc segments of computer-generated folds with L o / h  o = 20 and 
for n e = 1, 3, 10, m = 100 and n L = 1, 3, 10, m = 10, 215, 630, 

respectively• 

Data for selected numerically- and experimentally- 
produced folds from other studies are plotted as indi- 
vidual points on Figs. 17(a) and 18. Because there is such 
a weak dependence of ki on L/h and limb dip (for L/h 
>10) data are plotted on these figures if limb dip is 40 ° + 
5 ° (Fig. 17a) and L/h = 12 + 2 (Fig. 18). The experi- 
ments carried out by Hudleston (1973b) and the numeri- 
cal models of Cruikshank & Johnson (1993) utilized 
Newtonian materials, and the data for these plot close to 
the line for nL = 1. For all the experiments using 
non-linear materials, the data are consistent with highly 
non-linear behavior. The power-law exponents for the 
limestone and marble used in the experiments of Gairola 
& Kern (1984) are not known, but are likely to be high 
(nL > 3). In Cobbold's (1975) and Neurath & Smith's 
(1982) experiments, n L for the stiff layer was measured 
as 2.6 and 5, respectively. Growth rates in Neurath & 
Smith's experiments were unexpectedly high, perhaps, 
as the authors suggest, due to strain softening. This 
would result in an 'effective' power-law exponent  higher 
than the measured value (Neurath & Smith 1982)• 
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Fig. 17. Curvature index, ki, as a function of L/h at fixed limb dip 
interpolated from results of numerical fold models with L/h = 6, 12, 
20, n L = 1,3, 10 and m = 100. (a) Limb dip = 40 ° and (b) limb dip = 70 ~ 
(cf. Hudleston & Lan 1993, fig. 13a). Selected data for experimentally- 
produced folds (Currie et al. 1962, Hudleston 1973b, Cobbold 1975, 
Neurath & Smith 1982, Gairola & Kern 1984) and natural folds 
(Sherwin & Chapple 1968, and two sets of data from folds in siltstones 
in shales in the central Appalachians---populations 1 and 2) are plotted 

for comparison. See text for discussion. 

Natural folds 

D a t a  for  na tu ra l  folds  a re  p lo t t ed  in Figs.  17(b) and  
18. A g a i n ,  because  t he re  is such a w e a k  d e p e n d e n c e  of  
ki on L/h and  l imb dip ,  da t a  a re  p l o t t e d  on  these  figures 
if l imb d ip  is 70 ° + 5 ° (Fig.  17b) and  L/h = 12 _+ 2 (Fig.  
18). T h e  na tu ra l  da t a  c o m e  f rom the  s tudy  o f  Sherwin  & 
C h a p p l e  (1968) and  f rom our  own work  on smal l  folds 
f rom the Va l l ey  and  R i d g e  p rov ince  o f  the  cent ra l  
A p p a l a c h i a n s .  T h e  l a t t e r  folds  a re  d e v e l o p e d  in thin 
layers  o f  f ine -gra ined  s a n d s t o n e - s i l t s t o n e  in shale  o f  the  
T r i m m e r ' s  R o c k  F o r m a t i o n ,  sou theas t  Pennsy lvan ia .  
T h e y  can be cha rac t e r i zed  as occur r ing  in layers  i so la ted  
f rom the i r  ne ighbors :  r e p r e s e n t a t i v e  e x a m p l e s  a re  
shown in Fig.  19. T h e  d a t a  for  these  folds  c lus ter  in a 
field in Fig.  17(b) o r  Fig.  18 tha t  r anges  f rom a b o u t  n L = 
3 to  well  a b o v e  the  l ine for  n L = 10. 
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Fig. 18. Curvature index, ki, as a function of limb dip interpolated 
from results of numerical fold models with L/h = 6, 12, 20, n L = 1,3, 10 
and m = 100 (cf. Hudleston & Lan 1993, fig. 13b). Two sets of data 
from folds in siltstones in shales in the central Appalachians (popu- 
lations 1 and 2), one set of data from experimentally-produced folds in 
limestone (Gairola & Kern 1984) and data for other numerically- 
produced folds (for m = 100, n L = 1) (Cruikshank & Johnson 1993) are 

plotted for comparison. See text for discussion. 
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Fig. 19. Representative folds in fine sandstone-siltstone layers in 
shales of the Trimmer's Rock Formation, Pennsylvania, and their 
representation (with other folds from the same outcrop) on a plot of 
harmonic components. Only outer arcs are plotted. Hinges and 
inflection points are indicated for the numbered folds. Curvature 
indices for some of these folds are plotted on Figs. 17 and 18. The 
folds occur in a roadcut about 1 km north of the Watts exit on U.S. 

Highway 22. 

E x p e r i m e n t a l  w o r k  suggests  tha t  the  e x p o n e n t  in the  
flow law for  mos t  rocks  unde rgo ing  d e f o r m a t i o n  con-  
t ro l l ed  by crys ta l -p las t ic  d e f o r m a t i o n  mechan i sms  is in 
the  r ange  2 -< n L ~ 7 (e .g .  K i rby  & K r o n e n b e r g  1987). 
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Most of the data for the natural folds in Figs. 17(b) and 
18 imply nL > 10. The unexpectedly high values of nL 
inferred for the natural folds suggest that other factors, 
such as strain softening or anisotropy, may be influenc- 
ing fold shape. Neurath & Smith (1982) showed that 
strain softening may be considered, to a first approxi- 
mation, equivalent to increasing the effective power-law 
exponent in the flow law, and Cobbold (1976) and 
Ridley & Casey (1989) have shown that anisotropy can 
lead to instabilities and growth of sharp-hinged folds 
(thus having high values of ki). Further consideration of 
these possibilities is beyond the scope of this paper. It 
should also be stated here that there is considerable 
uncertainty about the flow laws appropriate to natural 
conditions, for a number of reasons. These include the 
wide range of values of flow law constants reported in 
experiments (Kirby & Kronenberg 1987) and the fact 
that most rocks are polymineralic and more complex 
rheologically than the monomineralic rocks typically 
tested (Handy 1990). 

Abbassi & Mancktelow inferred the effective stress 
exponent to be in their experiments. 

Conclusion 

The results of the numerical experiments presented in 
this paper and a comparison of their shape character- 
istics with those of experimentally-produced folds give 
support to the notion that it may be possible to use shape 
to make inferences about the rheological properties of 
rocks during folding in nature. Information on rheology 
obtained from a study of fold geometry, although incom- 
plete and with significant uncertainty attached, comp- 
lements information obtained from experimental rock 
deformation and analysis of microfabric. From the lim- 
ited data now available, there seems to be mutual 
consistency among these different approaches, in indi- 
cating non-linear material behavior, but inconsistency in 
the degree of non-linearity indicated. 

Variability o f  fold shape 

It is clear from the data plotted in Figs. 17 and 18 and 
for other types of data representing shapes of natural 
folds (e.g. Hudleston 1973c, Ramsay & Huber 1987, 
figs. 15.31 and 19.8) that there is a lot of'noise' in natural 
fold systems. This is not surprising considering that the 
surfaces of layers that develop natural folds often have 
irregularities that are up to 0.1 of layer thickness. 
Although our numerical simulations show a weak 
dependence of final shape on initial shape, in each case 
there is a 'primary' harmonic that controls shape devel- 
opment. This will not always be the case for natural 
perturbations, and it is common in nature to see the 
effects of superimposed wavelengths in a mature fold 
train. The most obvious examples of this can be avoided 
in analysis, but the final fold train is inherently noisy, 
being the result of the operation of the amplification 
spectra on the initial amplitude spectra (Fletcher & 
Sherwin 1978). 

Abbassi & Mancktelow (1990) examined the case of 
an initial asymmetric perturbation and showed that the 
asymmetry was preserved and even amplified in the final 
fold shape. Local asymmetry of the kind produced in 
their experiments is fairly common in otherwise sym- 
metric fold trains in nature. It is interesting to note that 
despite the asymmetry of the folds in Abbassi & Manck- 
telow's experiments, the two 'halves' of the fold (that is 
segments from hinge to inflexion points) have similar 
shapes as represented on harmonic analysis or ki plots. 
Either half represented on a plot of the type shown in 
Figs. 17 and 18 could thus reflect the rheology quite well. 
We find values of curvature index of between 0.6 and 0.7 
for both symmetric and asymmetric folds (with limb dips 
of 75-80 ° and L/h = 7-10) of Abbassi & Mancktelow 
(1990, fig. 2). In our numerical models these correspond 
to values of nL of ~ 5--7, roughly equivalent to what 
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